home  > about  > references nl es de fr pt it

References

Beck, E.-G. (2021) ‘Reconstruction of Atmospheric CO2 Background Levels since 1826 from Direct Measurements near Ground’, 2.2, pp. 148–211. Available at: https://doi.org/10.53234/scc202112/16.

Bereiter, B. et al. (2015) ‘Revision of the EPICA Dome C CO2 record from 800 to 600 kyr before present’, Geophysical Research Letters, 42(2), pp. 542–549. Available at: https://doi.org/10.1002/2014GL061957.

Berry, E. (2021) ‘The impact of human CO2 on atmospheric CO2’, Science of Climate Change, 1.2, pp. 213–249. Available at: https://doi.org/10.53234/scc202112/13.

Cawley, G.C. (2011) ‘On the Atmospheric Residence Time of Anthropogenically Sourced Carbon Dioxide’, Energy & Fuels, 25(11), pp. 5503–5513. Available at: https://doi.org/10.1021/ef200914u.

Connolly, R. et al. (2020) ‘How Much Human-Caused Global Warming Should We Expect with Business-As-Usual (BAU) Climate Policies? A Semi-Empirical Assessment’, Energies, 13(6), p. 1365. Available at: https://doi.org/10.3390/en13061365.

Engelbeen, F., Hannon, R. and Burton, D. (no date) ‘Human Contribution to Atmospheric CO2: How Human Emissions Are Restoring Vital Atmospheric CO2’, CO2 Coalition. Available at: https://co2coalition.org/publications/human-contribution-to-atmospheric-co2-how-human-emissions-are-restoring-vital-atmospheric-co2/ (Accessed: 22 December 2024).

Friedlingstein, P. et al. (2023) ‘Global Carbon Budget 2023’, Earth System Science Data, 15(12), pp. 5301–5369. Available at: https://doi.org/10.5194/essd-15-5301-2023.

Graven, H., Keeling, R.F. and Rogelj, J., 2020: Changes to Carbon Isotopes in Atmospheric CO2 Over the Industrial Era and Into the Future, Global Biogeochemical Cycles, 34(11), p. e2019GB006170, https://doi.org/10.1029/2019GB006170.

Hannon, R. (2021) The CO2 Kink; Firn to Ice Transition, Watts Up With That? Available at: https://wattsupwiththat.com/2021/01/15/the-co2-kink-firn-to-ice-transition/ (Accessed: 17 December 2024).

Harde, H. (2017a) ‘Scrutinizing the Carbon Cycle and CO2 Residence Time in the Atmosphere’, Global and Planetary Change, 152, pp. 19–26. Available at: https://doi.org/10.1016/j.gloplacha.2017.02.009.

Harde, H. (2017b) ‘Reply to Comment on “Scrutinizing the carbon cycle and CO2 residence time in the atmosphere”’. Available at: http://hharde.de/index_htm_files/Reply%202017-06-30.pdf (Accessed: 6 January 2023).

Harde, H. (2019) ‘What Humans Contribute to Atmospheric CO<sub>2</sub>: Comparison of Carbon Cycle Models with Observations’, Earth Sciences, 8(3), p. 139. Available at: https://doi.org/10.11648/j.earth.20190803.13.

Harde, H. (2023) ‘Science of Climate Change About Historical CO2-Data since 1826: Explanation of the Peak around 1940’. Available at: https://doi.org/10.53234/scc202304/21.

Haverd, V. et al. (2020) ‘Higher than expected CO 2 fertilization inferred from leaf to global observations’, Global Change Biology, 26(4), pp. 2390–2402. Available at: https://doi.org/10.1111/gcb.14950.

Hua, Q. et al., 2022: Atmospheric Radiocarbon for the Period 1950–2019, Radiocarbon, 64(4), pp. 723–745. https://doi.org/10.1017/RDC.2021.95.

Humlum, O., Stordahl, K. and Solheim, J.-E. (2013) ‘The phase relation between atmospheric carbon dioxide and global temperature’, Global and Planetary Change, 100, pp. 51–69. Available at: https://doi.org/10.1016/j.gloplacha.2012.08.008.

IPCC (2014) Climate Change 2013 – The Physical Science Basis: Working Group I Contribution to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. 1st edn. Cambridge University Press. Available at: https://doi.org/10.1017/CBO9781107415324.

IPCC (2023) Climate Change 2022 – Impacts, Adaptation and Vulnerability: Working Group II Contribution to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change. 1st edn. Cambridge University Press. Available at: https://doi.org/10.1017/9781009325844.

Jaworowski, Z., Segalstad, T.V. and Ono, N. (1992) ‘Do glaciers tell a true atmospheric CO2 story?’, Science of The Total Environment, 114, pp. 227–284. Available at: https://doi.org/10.1016/0048-9697(92)90428-U.

Jaworowski, Z. (2007) ‘CO2: The Greatest Scientific Scandal Of Our Time’. Available at: https://21sci-tech.com/Articles%202007/20_1-2_CO2_Scandal.pdf.

Jaworowski, Z., Segelstad, T.V. and Hisdsal, V. (1992) Athmospheric CO2 and global warming: a critical review. 2. rev. ed. Oslo: Norsk Polarinstitutt (Meddelelser / Norsk Polarinstitutt, 119). Available at: https://www.researchgate.net/publication/307215789_Atmospheric_CO2_and_global_warming_a_critical_review_2nd_edition.

Köhler, P. et al. (2018) ‘Comment on “Scrutinizing the carbon cycle and CO2 residence time in the atmosphere” by H. Harde’, Global and Planetary Change, 164, pp. 67–71. Available at: https://doi.org/10.1016/j.gloplacha.2017.09.015.

Koutsoyiannis, D. et al. (2023) ‘On Hens, Eggs, Temperatures and CO2: Causal Links in Earth’s Atmosphere’, Sci, 5(3), p. 35. Available at: https://doi.org/10.3390/sci5030035.

Koutsoyiannis, D. (2024a) ‘Net Isotopic Signature of Atmospheric CO2 Sources and Sinks: No Change since the Little Ice Age’, Sci, 6(1), p. 17. Available at: https://doi.org/10.3390/sci6010017.

Koutsoyiannis, D. (2024b) ‘Refined Reservoir Routing (RRR) and Its Application to Atmospheric Carbon Dioxide Balance’, Water, 16(17), p. 2402. Available at: https://doi.org/10.3390/w16172402.

Koutsoyiannis, D., 2024c: Stochastic assessment of temperature–CO2 causal relationship in climate from the Phanerozoic through modern times, Mathematical Biosciences and Engineering, 21(7), pp. 6560–6602. https://doi.org/10.3934/mbe.2024287.

Kouwenberg, L. (2003) Application of conifer needles in the reconstruction of Holocene CO2 levels. Utrecht: Universiteit Utrecht. Available at: <https://dspace.library.uu.nl/bitstream/handle/1874/243/full.pdf?.

Kuhn, T.S. (1996) The Structure of Scientific Revolutions. University of Chicago Press. Available at: https://doi.org/10.7208/chicago/9780226458106.001.0001.

Lai, J. et al. (2024) ‘Terrestrial photosynthesis inferred from plant carbonyl sulfide uptake’, Nature, 634(8035), pp. 855–861. Available at: https://doi.org/10.1038/s41586-024-08050-3.

Lee, J.-S. (2011) ‘Monitoring soil respiration using an automatic operating chamber in a Gwangneung temperate deciduous forest’, Journal of Ecology and Environment, 34, pp. 411–423. Available at: https://doi.org/10.5141/jefb.2011.043.

Levy, M. et al. (2013) ‘Physical pathways for carbon transfers between the surface mixed layer and the ocean interior: PHYSICAL CARBON FLUXES’, Global Biogeochemical Cycles, 27(4), pp. 1001–1012. Available at: https://doi.org/10.1002/gbc.20092.

Middleton, D. (2017) Breaking Hockey Sticks: Antarctic Ice Core Edition, Watts Up With That? Available at: https://wattsupwiththat.com/2017/03/28/breaking-hockey-sticks-antarctic-ice-core-edition/ (Accessed: 17 December 2024).

Palmer, P.I. et al., 2019: Net carbon emissions from African biosphere dominate pan-tropical atmospheric CO2 signal, Nature Communications, 10(1), p. 3344. https://doi.org/10.1038/s41467-019-11097-w.

Salby, M. and Harde, H., 2021: Control of Atmospheric CO2 Part I: Relation of Carbon 14 to the Removal of CO2. Classica Forlag AS. https://doi.org/10.53234/SCC202112/30.

Schrijver, F.J. (2024) ‘Impact of global greening on the natural atmospheric CO₂ level’, Science of Climate Change, 4(2), pp. 79–88. Available at: https://doi.org/10.53234/scc202411/02.

Stallinga, P. (2023) ‘Residence Time vs. Adjustment Time of Carbon Dioxide in the Atmosphere’, Entropy, 25(2), p. 384. Available at: https://doi.org/10.3390/e25020384.

Tamarkin, T. (2024) ‘Henry’s Law’, Henry’s Law, 2 January. Available at: https://henryslaw.org/.

Wang, S. et al. (2020) ‘Recent global decline of CO2 fertilization effects on vegetation photosynthesis’, Science, 370(6522), pp. 1295–1300. Available at: https://doi.org/10.1126/science.abb7772.

Zhang, H. et al. (2016) ‘Rising soil temperature in China and its potential ecological impact’, Scientific Reports, 6(1), p. 35530. Available at: https://doi.org/10.1038/srep35530.

Zhu, Z. et al. (2016) ‘Greening of the Earth and its drivers’, Nature Climate Change, 6(8), pp. 791–795. Available at: https://doi.org/10.1038/nclimate3004.




< Prev  29-01-2025 Next >